Doctoral defence: Bruno Montibeller “Evaluating human-induced forest degradation in different biomes using spatial analysis of satellite-derived data”

On 6 December at 14:15 Bruno Montibeller will defend his doctoral thesis “Evaluating human-induced forest degradation in different biomes using spatial analysis of satellite-derived data” for obtaining the degree of Doctor of Philosophy (in Geoinformatics). 

Associate Professor Evelyn Uuemaa, University of Tartu
Professor Ülo Mander, University of Tartu

Dr. Cornelius Senf, Technical University of Munich (Germany)

Forests are strongly impacted by human activities. While the deforestation is very likely the most common examples of human impact on forested areas, the remaining standing forests are susceptible to other types of direct or indirect forest degradation by humans. The direct human-induced impacts can be exemplified by forest fragmentation or selective logging while the indirect human-induced impacts can be related to the changes in the ecosystem services (e.g., carbon and water cycling) induced by anthropogenic climate change.

The aim of this thesis was to evaluate two processes related to forest degradation: (i) fragmentation of tropical forest cover in the Brazilian Amazon and (ii) changes in forest evapotranspiration over/across the Baltic countries and the carbon cycle in undisturbed forest areas across Europe. Satellite derived data and spatial analyses were used to assess the impacts of forest degradation in these three different case studies.

The results of this thesis showed that although the anti-deforestation initiatives have played an important role in reducing deforestation in the Brazilian Amazon region, the forest fragmentation has increased mainly because of the decrease in the size of forest loss patches and the spatial shift into areas previously isolated areas. Hence, more forest areas are potentially being degraded because of the edge effects (e.g., tree mortality) caused by the fragmentation. For the Baltic region, the results indicated an intensification of the evapotranspiration rates over undisturbed forest areas. The intensification occurred mainly during spring and early autumn months because of the longer growing season induced by the increasing temperatures during these periods. Changes in the climate patterns were also the potential cause for changes in the carbon assimilation rates over the European forests. Approximately 25% of the undisturbed European forests showed reduced total carbon assimilation. That shows the vulnerability and incapacity of certain forest areas to act as carbon sink.

#research #for society
Some of the most common basidiocarp morphotypes in Dacrymycetes.

Doctoral defence: Anton Savchenko “Taxonomic studies in Dacrymycetes: Cerinomyces and allied taxa”

kuvatõmmis projekti Väike Nirvana videost

Research news: ethnic roots of Estonian peoples, problematic use of social networking sites, reducing the fear of pain, and a novel solution for wound treatment

#research #for society

Coronavirus infections down by more than a third