Gamal Elkoumy kaitseb doktoritööd „Privacy-enhancing technologies for business process mining“

12. detsembril kell 10.15 kaitseb Gamal Elkoumy informaatika erialal doktoritööd „Privacy-enhancing technologies for business process mining“ („Privaatsuskaitse tehnoloogiaid äriprotsesside kaeveks“).

Juhendaja:
prof Marlon Dumas, Tartu Ülikool

Oponendid:
nooremprof Han van der Aa, Mannheimi Ülikool (Saksamaa)
dots Marwan Hassani, Eindhoveni Tehnikaülikool (Holland)

Kokkuvõte
Protsessikaeve tehnikad võimaldavad organisatsioonidel analüüsida protsesside täitmise käigus tekkivaid logijälgi eesmärgiga leida parendusvõimalusi. Nende tehnikate eelduseks on, et nimetatud logijälgi koondavad sündmuslogid on andmeanalüütikutele analüüside läbi viimiseks kättesaadavad. Sellised sündmuslogid võivad sisaldada privaatset informatsiooni isikute kohta kelle jaoks protsessi täidetakse. Sellistel juhtudel peavad organisatsioonid rakendama privaatsuskaitse tehnoloogiaid (PET), et võimaldada analüütikul sündmuslogi põhjal järeldusi teha, samas säilitades isikute privaatsust.
Kuigi PET tehnikad säilitavad isikute privaatsust organisatsiooni siseselt, muudavad nad ühtlasi sündmuslogisid sellisel viisil, mis võib viia analüüsi käigus valede järeldusteni. PET tehnikad võivad lisada sündmuslogidesse sellist uut käitumist, mille esinemine ei ole reaalses sündmuslogis võimalik. Näiteks võivad mõned PET tehnikad haigla sündmuslogi anonüümimisel lisada logijälje, mille kohaselt patsient külastas arsti enne haiglasse saabumist.
Käesolev lõputöö esitab privaatsust säilitavate lähenemiste komplekti nimetusega privaatsust säilitav protsessikaeve (PPPM). PPPM põhiline eesmärk on leida tasakaal võimaliku sündmuslogi analüüsist saadava kasu ja analüüsile kohaldatavate privaatsusega seonduvate regulatsioonide (näiteks GDPR) vahel. Lisaks pakub käesolev lõputöö lahenduse, mis võimaldab erinevatel organisatsioonidel protsessikaevet üle ühise andmete terviku rakendada, ilma oma privaatseid andmeid üksteisega jagamata.
Käesolevas lõputöös esitatud tehnikad on avatud lähtekoodiga tööriistadena kättesaadavad. Nendest tööriistadest esimene on Amun, mis võimaldab sündmuslogi omanikul sündmuslogi anonüümida enne selle analüütikule jagamist. Teine tööriist on Libra, mis pakub täiendatud võimalusi kasutatavuse ja privaatsuse tasakaalu leidmiseks. Kolmas tööriist on Shareprom, mis võimaldab organisatsioonidele ühiste protsessikaartide loomist sellisel viisil, et ükski osapool ei näe teiste osapoolte andmeid.

Kaitsmist saab jälgida Zoomis (kohtumise ID: 975 4557 2829, pääsukood: ati).

Kas leidsite vajaliku informatsiooni? *
Aitäh tagasiside eest!